Trenchless Cured in Place Watermain Rehabilitation meeting NSF 61

Presented by

Fred Tingberg Jr., Lanzo Lining Services Michael Janicki, Clinton Township Water Dept. Mitch O Connor, P.E. Spalding Dedecker

Innovation: Cured in Place Watermain Rehab

- Minimum disruption
- NSF 61 compliance
- Over 1,000,000 lf of CIPP potable watermain installed
- Ability to preempt line breaks
- ASTM F 1743 Pull in Place Method
- 100 psi working pressure
- fifty (50) year design life

Certified to NSF/ANSI 61

Clinton Township Watermain Project Overview

- 3500 lineal feet
- 70 services
- Multiple recent pipe breaks in subdivision
- 50 year old cast iron watermain
- Tree lined streets
- Issues with water color/odor

CIPP Design Basis Review

Dealgnation: F 1216 - 93

Standard Practice for Rehabilitation of Existing Pipelines and Conduits by the Inversion and Curing of a Resin-Impregnated Tube^{1,2,3}

This standard is issued under the fixed designation F 1216; the number original adoption or, in the case of revision, the year of last revision. A m superscript epsilon (a) indicates an editorial change since the last revision

is practice describes the procedures for the reconof pipelines and conduits (4 to 96-in. diameter) by lation of a resin-impregnated, flexible tube which is into the existing conduit by use of a hydrostatic air pressure. The resin is cured by circulating hot introducing controlled steam within the tube. When e finished pipe will be continuous and tight-fitting, onstruction process can be used in a variety of nd pressure applications such as sanitary severs, vers, process piping, electrical conduits, and ventiterns.

e values stated in inch-pound units are to be the standard. The values given in parentheses are

An

451 Designation: F 1743 - 96

AMERICAN SOCIETY FOR TUSTING AND MA THE BAST Names for West Constructions, P Pagement from the Annual Basis of All Tal Summary, If well field in the Construction of Annual Summary,

Standard Practice for Rehabilitation of Existing Pipelines and Conduits by Pulled-in-Place Installation of Cured-in-Place Thermosetting Resin Pipe (CIPP)¹

> at under the fixed designation F (74); the number immediately following the designation indicates the y In the case of revision, the year of last revision. A number is parenthenes indicates the year of last ranges) indicates an editorial change ulses the insi revision or rangeproxil.

s the procedures for the reconinduits (4 to 96 in. (10 to 244 in-place installation of a resinube into an existing conduit and the inversion of a calibration tic head or air pressure (see Figirculating hot water or by the cam into the tube. When cured, ipe will be continuous and tight rocess may be used in a variety cations such as sanitary severs, , electrical conduits, and venti-

inch-pound units are to be values given in parentheses are D 1039 Test Method for Tensile Pro Matrix Composite Materials¹

- D 3567 Practice for Determining D forced Thermosetting Resin Pipe (D 4814 Specification for Automotive
- gine Fuel⁷
- D 5813 Specification for Cured-in Resin Sewer Pipe⁶
- F 412 Terminology Relating to Pla
- F 1216 Practice for Rehabilitation and Conduits by the Inversion Impregnated Tube⁶
- 2.2 AWWA Standard
- M28 Manual on Cleaning and L
- 2.3 NASSCO Standard:
- Recommended Specifications for

Engineering Design Manual for Rehabilitation of Cured-In -Place Pipe

Benefits of CIPP watermain rehab

- Eliminate leakage
- Fully structural repair
- Minimal trench requirements
- Improve hydraulic capacity
- Time savings
- Reduced residential impact
- Internal pipeline reinstatements
- Maximum hydraulic radius

Note: not to scale

Installed diameters	6 - 12 in
Installed lengths	up to 500 feet
Hazen Williams Coefficient	>120

Site specific criteria

General Installation Criteria

- 500 lf liner lengths
- Excavation pits required at each liner end
- Closure assemblies mirror utility material preference; C-900, DIP, Joint Restraints, etc.
- Temporary hydrant capacity
- Bacteriological test duration/redundancy
- Test pressure in excess of 100 psi

Pit construction / Bypass

- Pits at 500 foot intervals
- Tees, 90's, dead ends, hydrants define pits
- Bypass assembled, pressurized, chlorinated, tested then connected
- Each home tied in
- Main isolated then accessed

Water Main Renewal Install Temporary By-Pass

Connection through garden spigot

Bypass established from hose bibs at each service connection

Detuberculate, rinse, televise

Internally plug corp stop prior to lining

Tube preparation and wet out

Winching the liner tube in place

Water Main Renewal Liner installation

Proofing and pressurizing the line

Liner curing, pressure testing & service reinstatement

- 8 hour cure at temperature
- Pressure test liner
- Expose liner and re televise
- Robotically reinstate services

Restore services, dismantle bypass

Project Summary

- Approximately 3000 linear feet rehabilitated
- Six (6) pits required
- Total cost approximately \$160 per lineal foot
- Total Time of construction 30 days